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1 | INTRODUCTION

Crop progress reports summarize the results of weekly
crop progress and condition surveys conducted by the
National Agricultural Statistics Service, a division of
the US Department of Agriculture (USDA). The infor-
mation from the reports is used by producers, grain
traders, and businesses, as well as federal and state
agencies, to assess and manage the risk inherent in
crop production. Research by Lehecka (2014) shows
that the reports have substantial informational value in
that market prices tend to react rapidly to new crop
condition information. As the name implies, the reports
provide information about the growing season progress
and overall condition of major US crops. The crop
condition portion of each report shows the percent of a
given crop rated “very poor,” “poor,” “fair,” “good,”
and “excellent” for selected states and the United States
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Crop condition reports are an important source of information for producers,
grain traders, businesses, and policymakers to assess and manage the price
and yield risk inherent in a given crop. A Markov chain model is proposed for
describing the weekly dynamic behavior of reported crop conditions. Empirical
transition probabilities are estimated for corn grown in Nebraska, and fore-
casted crop conditions from the Markov chain are used as inputs to forecast
final crop yields prior to harvest time. The results suggest that the modeling
and forecasting approach has value for estimating crop yields as intrayear
information about crop conditions materializes.

crop condition, Markov chain, maximum entropy, weighted least squares

as a whole. According to the USDA-National

Agricultural Statistics Service:

All states participate in the survey. Each
state maintains a list of reporters, largely
extension agents and Farm Service Agency
staff, who report progress and conditions of
selected crops in their area for the current
week. Nearly every county in every state has
at least one reporter. Reports returned each
week account for over 75 percent of the acre-
age for major commodities.

While subjective in nature, reported crop conditions
do provide useful information about intraseason crop
quality. For example, a weighted average crop condition
index, constructed using an index of 1 (very poor) through
5 (excellent) with the crop condition percentages as the
weights, shows how the quality of a crop varies week to
week during the growing season. When the index
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increases (decreases), it is the consensus opinion of sur-
vey respondents that a better (worse) crop will ultimately
result at the culmination of the growing season. It should
be noted that while crop conditions are inherently quali-
tative, an “excellent” condition, for example, implies
above average production. In fact, as noted by Norwood
and Fackler (1999), the USDA has specific definitions in
mind for each qualitative condition:

« Excellent: Yield prospects are above normal. Crops are
experiencing little or no stress. Disease, insect damage,
and weed pressures are insignificant.

« Good: Yield prospects are normal. Moisture levels are
adequate, and disease, insect damage, and weed pres-
sures are normal.

« Fair: less than normal crop condition. Yield loss is a
possibility, but the extent is unknown.

« Poor: heavy degree of loss of yield potential which can
be caused by excess soil moisture, drought, disease,
and so forth.

« Very poor: extreme degree of loss of yield potential,
complete or near crop failure.

Therefore, while the class definitions are purely quali-
tative in nature, they are meant to convey a sense of the
quantity of a crop likely to be produced.

Even so, there is no research connecting reported crop
conditions, which occur weekly during the growing season,
with the ongoing and eventual total production of a crop.
Kruse and Smith (1994) developed a model to estimate corn
and soybean yields by crop condition class. Heteroskedasti-
city is noted as a problem attributable to their use of pooled
data (i.e., nonconstant yield variance across states), and the
authors use weighted least squares to remediate the prob-
lem. Norwood and Fackler (1999), building on the research
by Kruse and Smith (1994), use ordinary and weighted least
squares to estimate the ratio of crop (corn, cotton, soybean,
and spring wheat) yield-to-yield trend by crop condition
class citing the same source of heteroskedasticity.

The purpose of this research is to report on an alterna-
tive yield forecast model based on crop conditions. More
specifically, we specify a model of the intrayear movement
of reported crop conditions as a Markov chain. Markov
chains have seen extensive use in forecasting by, for exam-
ple, Liu et al. (2015) for mortgage stress testing, Lo et al.
(2016) for latent volatility, Tang et al. (2018) for scenario
analysis, and Li and Andersson (2020) for density forecast-
ing. Markov chains specific to forecasting crop yields have
been employed by Matis et al. (1985, 1989), but those
efforts predate the USDA crop condition data described
above. Also, our models differ considerably from previous
research in that no attempt is made to forecast intrayear or
end-of-year yield by condition class directly. Rather, we

focus on the modeling of weekly dynamics of crop condi-
tions and what those dynamics mean for the ongoing and
final estimate of overall crop yield. An empirical applica-
tion of the model is presented for corn grown in Nebraska
using two different estimators for the transition probabili-
ties making up the Markov chain.

The paper is organized as follows: In Section 2, we
motivate the Markov chain model for crop conditions and
present two models for estimating the transition probabili-
ties of the Markov chain; while in Section 3, we provide
empirical support for the model. Section 4 concludes.

2 | MODELS OF CROP CONDITION

In this section, we briefly motivate reported crop condi-
tion as a stochastic process amenable to estimation as a
first-order Markov chain. Further, we present two
methods of estimation and show how the resulting
models can be used to estimate year-end crop yields.

2.1 | Crop conditions

Let a;(t) denote the number of acres of a given crop
(e.g., corn) in a county in the ith crop condition class at
time t where i=1,...,5 and > _,a;(t) = A(t) where A(t) is
the total acreage of a particular crop in the county.
Although it is of no consequence for the discussion that
follows, to be consistent with constructed crop condition
indices, we assume i=1 represents the “very poor” crop
condition, i = 2 represents the “poor” crop condition, and
so forth.

The acreage, a;(t), indicates the sequence of crop con-
dition states frequented at t=0,...T points in time. If the
a;(t) were directly observable, it would be straightforward
to calculate a; =) ,a;(t) where a;(t) is the number of
acres transitioning from crop condition class i to j over
one (weekly) time period. Then, assuming a time homo-
geneous Markov chain, the distribution of the a;(t) may
be obtained by considering the a;(t—1) =} ;a;(t) obser-
vations on a multinomial distribution with transition
probabilities, p;. Anderson and Goodman (1957) have
shown that the maximum likelihood estimator of the
transition probabilities is then p; = aij/zjaij >0.

Unfortunately, the a;(t) are not directly observable
(at least publicly), and there is no guarantee that the
underlying Markov chain is time homogeneous. For exam-
ple, it is reasonable that transition probabilities between
crop condition classes may depend on those elements used
to define and describe the classes, namely, the amount of
soil moisture and the extent of disease and insect damage.
As a result, we take the following approach. Let c¢;(t)
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represent the reported percentage of a crop in the ith
crop condition class at time ¢ in a given area where for
any time ¢, ) ,c(t)=1. It follows that observable
¢i(t) = a(t)/ ;) are generated from the unobservable a;(t).!

When all we can observe are the proportions ¢;(t),
Lee et al. (1970) has shown that there are no set of transi-
tion probabilities that will satisfy the dynamic relation-
ship between the unconditional probabilities of the
Markov chain.? However, if we substitute the crop condi-
tion proportions for the unconditional probabilities and
allow for random error, denoted ¢(t), the Markov rela-
tion may be stated as

G0 =Y pyalt-D+50, Vit (1)

from which the p;(t) may be estimated from the ¢;(¢) and
¢j(t—1) data.

Equation (1) is the central assumption behind the
present research, namely, that a first-order Markov chain
(with error) is a reasonable model of crop condition
dynamics for a given crop in a given region. Further,
notice that in (1), the transition probabilities are shown
as a function of ¢ indicating a time inhomogeneous
Markov chain is not precluded. In the empirical
section of the paper below, we conduct extensive statisti-
cal tests to determine whether there is empirical support
for a time inhomogeneous or time homogeneous Markov
chain (i.e., whether p;() = py).

2.2 | Transition probability models

Two models are presented in this section for the estimation
of the transition probabilities. Tests of the stationarity of a
Markov chain have been proposed by Anderson and Good-
man (1957), Kelton and Kelton (1984), and Mattsson and
Thorburn (1989). As shown in the empirical section below,
using the approaches suggested by Kelton and Kelton
(1984), there is no statistical evidence in support of a time
inhomogeneous Markov chain for corn crop conditions in
Nebraska. Therefore, we proceed with the model presenta-
tions and descriptions assuming that p;(t) = p; V.

Likely, the simplest possible method to estimate the
transition probabilities is inequality restricted least
squares. Madansky (1959) notes that proportional data
are inherently heteroskedastic so that weighted inequal-
ity restricted least squares (WLS) is appropriate. The
inequality stems from the fact that the estimated transi-
tion probabilities are nonnegative. The WLS model is

min Q(p) =Y _ > wié; (1), )
rj

t
> py=1, Vi, (4)
J
(T—r)
(1)
T
w; = >.6(1) (5)

[(Z:;N)) <1 - Zthj(t))} -

Inequality restricted least squares is a special case of
minimizing the objective function (2) subject to (3)—(5)
when the weights, w;, equal 1 for all classes. The equa-
tions in (3) are the Markov relation for each class and
week, while the equations in (4) ensure that the residuals
are mean zero, that all crop conditions are being mod-
eled, and that the transition probability estimates are
nonnegative. The specific weights considered in the esti-
mation are presented in the equations in (5). As shown in
(5), weights equal the inverse of the variance, inverse of
mean sample proportions, and the inverse of the product
of the mean sample proportions are all possible although
the inverse of the variance is the most appealing. In the
variance equation, Ejz(t) are the (unweighted) inequality
restricted least squares residuals found by minimizing (2)
subject to (3) and (4) with the weights equal to 1 for each
class. Therefore, a two-stage estimation is required with
the residual variance from the first stage used in the
weighting scheme for the second stage.

It should be noted that generalized least squares
(GLS) would likely be a better choice as WLS does not
explicitly account for serial correlation in the residuals.
GLS is only possible if a state (i.e., an equation) is
dropped from the system (2) subject to (3) and (4) due
to the variance/covariance matrix of residuals being sin-
gular and therefore not invertible. However, a GLS
approach also requires nonzero data for each class, and
in a great many instances, zero data are reported for
the “poor” and especially “very poor” classes. It is possi-
ble to substitute a small value for the zeros, say 0.001,
but that approach was not taken here owing to the
great number of substitutions that would be required.
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Consequently, the WLS model above was used in the
empirical application.?

As an alternative, we specify an information theoretic
econometric model for the estimation of the transition
probabilities that offers slightly more flexibility than the
previous model. The maximum entropy (ME) model esti-
mation is

maxH(p,q)— Y > pylnp;—» > > gy (6)Ing(e),
i Tk
(6)

s.t. ¢(t)= Zpijci(t— 1)+ Zukqjk(t), Vj,t, (7)
i k

DO wgu(t)=0, Vj

t k
Spy=1 Vi > g =1, 8)
J k

p; =20, Vij q.=20 Vk

Here, the objective function in (6) is the maximization
of entropy through the selection of two sets of probabili-
ties: the p; as before, but also g (t), the probabilities
associated with the error terms on the Markov relation in
(7). As shown, the error term from (3) has been decom-
posed into the sum-product of a vector of error support
values, uy, and estimated probabilities, qjk(t).

Golan (2018) provides motivation for using the infor-
mation concept of ME in econometric estimation and
refers generally to the specification as info-metrics.
Because the probabilities to be estimated are bounded
between zero and one, the errors support values are
bounded between +1 and the error support vector
[-1-1011] is used. Lastly, the mean zero error, nor-
malization, and nonnegativity equations in (8) are consis-
tent with those in (4). The additional flexibility inherent
in the system (6) subject to (7) and (8) is discussed below
in the empirical application section of the paper. Lastly,
the maximization of (6) subject to (7) and (8) does not
admit a closed form solution for the estimator but is rela-
tively easy to implement numerically.*

It should also be noted that the maximization of (6)
subject to (7) and (8) is fundamentally different than
squared error approaches such as the minimization of (2)
subject to (3)-(5). In (6), the principle of ME involves
finding the discrete probability distributions making up
the rows of the transition probability matrix that obey the
Markov relations but are otherwise as close as possible to
uniform distributions. The proximity or divergence
between the estimated and uniform distributions, mea-
sured according to (6), is not a true distance measure as

in (2) due to the former's violation of the triangle
inequality.

3 | EMPIRICAL RESULTS

After estimating the transition probabilities describing
the dynamics of crop condition, intrayear and final crop
conditions can be estimated by forecasting the evolution
of crop conditions using the estimates. Because crop con-
ditions are released weekly during the growing season,
weekly estimates of harvest time yield are possible by
using the estimated transition probability matrix and a
model describing how, for example, the final forecasted
crop conditions translate to yield. To this end, an econo-
metric model is specified wherein the final proportionate
“excellent” and “good” crop conditions along with a
trend variable are used to forecast the final yield.

3.1 | Estimation ofyields

As shown in Figure 1, since 1986, when crop condition
data became available, average annual Nebraska corn
yields appear to have a strong linear trend. Data from
2021 are not a part of the final estimation so they can be
used to demonstrate model use and comparison with
actual intrayear and final USDA yield estimates. The
regression results presented in Table 1 show that, consis-
tent with Schnitkey (2017), Irwin and Good (2017a,
2017b), and Irwin and Hubbs (2018) for corn and soy-
beans grown in Illinois, there is a statistically significant
relationship between the final Nebraska corn yield and
the late season proportion of the crop considered “excel-
lent” and “good.” Panel A of Table 1 shows the results of
an ordinary least squares (OLS) regression of final yield
as a function of a trend variable and the proportion of the
corn crop in Nebraska considered “excellent” and “good”
during the last week in a given growing season for which
conditions are provided. As shown, the variables are all
highly statistically significant and the model explains
much of the variation in yields.

Even so, the residuals are serially correlated as indi-
cated by the Durbin-Watson test statistic. Panel B of
Table 1 shows the regression results after correcting for
the serial correlation using the Prais—-Winsten approach.
The Ljung-Box test is a test of the null hypothesis that all
autocorrelation coefficients out to m = InN lags are zero
indicating a white noise time series. As shown, the OLS
model (Panel A) suggests a rejection of the null in favor
of at least one lag having a nonzero autocorrelation coef-
ficient while the corrected model in Panel B shows a fail-
ure to reject the null. The augmented Dickey—Fuller test
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FIGURE 1 Nebraska average corn yield 2500
(bushels per acre), 1986-2020.
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TABLE 1 Nebrask
. ebraska average <f0rn Panel A: OLS estimation
yield (bushels per acre) as a function of
time trend and final “excellent” and Variable Estimate Standard error t-statistic
“good” crop condition percentages, Intercept 75,639 5.729 13.20
1986-2020.
Trend 2.055%** 0.104 19.70
Excellent 69.000%%* 10.861 6.34
Good 48.511%*** 10.449 4.64
Adjusted R? 0.932 Ljung-Box 4.034%*
F33 157.000%** ADF (no intercept) —4.167%**
Durbin-Watson 1.342%* ADF (intercept) —4.105%**
Jarque-Bera 2.427 ADF (intercept + trend) —4.045%**
Panel B: Prais-Winsten serial correlation estimation
Variable Estimate Standard error z-statistic
Rho 0.334%* 0.162 2.07
Intercept 74.290%** 5.713 13.00
Trend 2.067*** 0.140 14.79
Excellent 69.974%** 9.320 7.51
Good 50.396%** 9.817 5.13
Ljung-Box 0.087 ADF (no intercept) —4.142%%*
Durbin-Watson 1.908 ADF (intercept) —4.081***
Jarque-Bera 2.159 ADF (intercept + trend) —4.024%**

Abbreviation: ADF, augmented Dickey-Fuller.

**Significance at the 5% level.
***Significance at the 1% level.

statistics indicate that the residuals are stationary and the
results of the Jarque-Bera test indicate there is no statisti-
cal support for nonnormally distributed errors.

The regression results in Table 1, Panel B, suggest
that corn yield in Nebraska tends to trend up about

2 bushels per acre annually, likely due to better technol-
ogy (inputs like seed and herbicides as well as better pro-
duction practices). In addition, each 1% of final
“excellent” (“good”) corn acreage in Nebraska results in a
final estimated +0.7 (40.5) bushels of corn per acre. To
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provide some perspective, since 1986, the final “excel-
lent” (“good”) proportion of corn acreage in Nebraska
has averaged 19.8% (48.5%) with a range of 2-45% (24-
69%). As an example, a high of 45% “excellent” corn crop
condition at the end of the growing season relative to the
sample average results in (45% — 19.8%) x 69.974 = 17.6
more bushels of corn yield per acre on average.

3.2 | Estimation of transition
probabilities

Shown in Table 2 are the WLS (Panel A) and ME (Panel
B) estimated transition probabilities for corn crop condi-
tions in Nebraska. Given weekly crop condition reports,
transition probabilities to distant states were precluded
via constraints on the estimation. For example, “excel-
lent” corn acreage in Nebraska cannot transition to the
“fair” state in one week's time although it can transition
to the “good” state. Similarly, “good” corn acreage can
transition to the “excellent” or “fair” states (in addition to
remaining “good”) but cannot transition to the “poor” or
“very poor” states in one week's time. In either case, the
matrices are diagonally dominant implying that crop con-
ditions, on average, tend to stay the same week to week.
Further, both estimations are consistent with crop

TABLE 2

conditions being more likely to improve rather than dete-
riorate. Irrigation may play a significant role in this result
because more of Nebraska's corn crop is irrigated than in
any other state.

As noted above, statistical testing for time homogene-
ity showed no evidence that a Markov model characteriz-
ing Nebraska corn crop condition is not a stationary
Markov chain. This result is likely attributable to the
extent of irrigation in Nebraska. Both interyear and intra-
year testing were conducted using methods suggested by
Kelton and Kelton (1984) and consisted of (a) estimating
transition probabilities for the sample periods 1986-2003
and 2004-2021, (b) estimating annual matrices for the
first and second half of each year (i.e., within a growing
season), and (c) pooling all data and estimating monthly
matrices for comparison.

Regarding (a) above, there is no statistical evidence in
favor of rejecting the null hypothesis of a time homoge-
neous Markov chain. Estimating restricted (whole sam-
ple) and unrestricted (two subperiod samples) sum of
squared errors results in F,, ,, =0.60275 for v; =20 and
v, =2,840 degrees of freedom yielding a p-value of
0.9137. This result suggests that the evolution
of Nebraska corn conditions from the time when the sur-
vey began until the early 2000s is not statistically differ-
ent than it is more recently. Similarly, for (b) above,

Weekly stationary Nebraska corn weighted least squares (WLS) and maximum entropy (ME) crop condition transition

probability estimates, goodness-of-fit statistics, and limiting distributions, 1986-2020.

Panel A: WLS estimates

Excellent Good Fair Poor Very poor
Excellent 0.9015 0.0985 0.0000 0.0000 0.0000
Good 0.0400 0.9224 0.0376 0.0000 0.0000
Fair 0.0000 0.0857 0.8509 0.0633 0.0000
Poor 0.0000 0.0000 0.1652 0.7566 0.0782
Very poor 0.0000 0.0000 0.0000 0.0927 0.9073
R? 0.8359 0.8377 0.8056 0.8538 0.9534
+o00 0.1886 0.4643 0.2034 0.0780 0.0657
Panel B: ME estimates

Excellent Good Fair Poor Very poor
Excellent 0.8619 0.1381 0.0000 0.0000 0.0000
Good 0.0527 0.8985 0.0487 0.0000 0.0000
Fair 0.0000 0.1167 0.7855 0.0978 0.0000
Poor 0.0000 0.0000 0.2932 0.5355 0.1713
Very poor 0.0000 0.0000 0.0000 0.2753 0.7247
R? 0.8315 0.8296 0.7956 0.8402 0.9305
+00 0.1884 0.4938 0.2062 0.0688 0.0428
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rejection of the null of a time homogeneous Markov
chain only occurred in 2016 (out of 35 estimated annual
matrices), but at a level of significance that is a little
higher than the conventional 5% (p-value =6.97%). This
result suggests that each year, there is no statistical
difference between early and late growing season transi-
tion probabilities. Lastly, for (c) above, the null hypoth-
esis of a time homogeneous Markov chain was only
rejected when comparing the June to July matrices, but
again at a level of significance a little higher than 5%
(p-value = 6.03%). This result suggests that, for example,
the transition probability matrix describing corn condi-
tions in Nebraska in any month is not statistically differ-
ent than the next month. One might argue that
comparing the weekly transitions in June to those in July
does result in some difference, but the p-value is not
overly compelling, and the null cannot be rejected in any
of the other months. For this reason and the strength of
the other tests, our conclusion is that corn crop condi-
tions in Nebraska are a stationary Markov chain.

Also shown in Table 2 are the goodness of fit R?
values by class as well as the invariant distribution
implied by each matrix estimation. The overall R* for the
WLS (ME) estimation was 0.8335 (0.8296). The
invariant distribution is suggestive of the distribution of
the underlying stochastic process given enough time
passes. While the sort of time passage required makes
little sense given that growing seasons ultimately
come to an end long before the invariant distribution is
obtained, the underlying dynamics do suggest, at least
mathematically, the specific invariant distribution
shown. This is possibly where the ME formulation may
offer superior flexibility for estimation in that the
invariant distribution information can be incorporated
directly into the estimation.

To see this, consider that the invariant distribution is
found by solving the Kolmogorov backward equations:
P'=AP or forward equations: P'=PA with P(0)=1I
where P is the estimated transition probability matrix, A
is an infinitesimal generator matrix, and I is an identity
matrix. In either case, the invariant distribution results in
a matrix with identical rows equal to those shown
in Table 2. In the ME model (6) subject to (7) and (8),
additional constraints can be added so that the invariant
distribution implied by a given transition probability
matrix is consistent with exogenous long-term average
proportions. We specify the sample averages for each
class as the long-term average proportions and condition
the estimation of the transition probabilities on this infor-
mation in an iterative fashion. As a technical aside, the
long-term averages are only obtainable with error, and
additional error supports and error probabilities by class

similar to those in (6)-(8) are added to the ME model (6)
subject to (7) and (8). The long-term averages used are as
follows: 17.2% (excellent), 53.7% (good), 20.9% (fair), 5.6%
(poor), and 2.7% (very poor).

A convenient way to compare the WLS and ME
invariant distributions implied by the transition
probability estimates to the long-term average distribu-
tion noted above is by calculating the Kullback-Leibler
(KL) divergence measure. The closer the measure is to
zero, the closer two distributions are to one another in
terms of probability. In fact, two identical distributions
have KL divergence equal to zero. Comparing the WLS
(ME) invariant distribution to the long-term distribution
results in a KL divergence equal to 0.0302 (0.0081).
Therefore, the ME estimation results in a transition
probability matrix that, in addition to capturing the
intrayear dynamics, better accommodates the empirically
observed long-term average proportions.

Lastly, using the estimated matrices from Table 2 and
the actual 2021 Nebraska corn condition proportions as
they occurred over Weeks 21-42 in 2021 and shown in
Figure 2, forecasts of the final corn condition proportions
can be estimated as crop condition information arrives.
These forecasted final proportions can then be used in
the regression equation from Table 1 to estimate weekly
crop yields. Shown in Figure 3 are the results for both
WLS and ME estimations as well as USDA forecasts of
the final Nebraska corn yield which began in Week
30 and ended in Week 42 in 2021. The final value shown
and labeled “FINAL” is not a forecast but rather the
actual USDA estimated total bushels of Nebraska corn
production in 2021 divided by the total acres planted in
2021.

As shown, Weeks 21 to 29 suggest both yield forecasts
are around 189 bushels per acre and that the ME esti-
mate is slightly more conservative than the WLS estimate
(0.61 bushel per acre on average). Beginning in Week
30 and continuing until Week 37, the estimates are decid-
edly closer to one another averaging only 0.21 bushels
per acre difference with the WLS estimate being the
slightly more conservative of the two. In addition, both
estimates are trending downward over this period,
and this result is coincident with a slight decrease
(increase) in the percent of Nebraska corn considered
“good” (“fair”) (see Figure 2). From Weeks 37 to
42, there is virtually no difference between the two
estimates (0.03 bushels per acre difference on average),
and both are increasing likely due to the increase in
the percent “excellent” category (see Figure 2) during
those weeks.

In addition, the official USDA estimate for August
(186 bushels per acre) was initially below those suggested
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FIGURE 2 Weekly Nebraska crop conditions, 2021.
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by the two forecasts by about 1.5 bushels per acre. By
contrast, the September (188 bushels per acre) and
October (190 bushels per acre) USDA estimates were
both above those forecasted by the Markov chain by
about 2 bushels per acre. However, in both cases, the
Markov chain yield estimates increased in the subsequent
weeks to approximate the USDA value. Lastly, the final
yield, as reported by the USDA (191 bushels per acre),
was about 1 bushel per acre more than the October
USDA estimate as well as the final Markov model
estimates.

4 | CONCLUSIONS

The research presented here adds to the ways in which
crop yields can be forecasted by leveraging the flow of
intraseason crop condition information. We show how
crop conditions can be modeled as a Markov chain and
show how to link the flow of intraseason crop condition
information to final crop yields. Analytically, two differ-
ent approaches are taken to estimate the transition prob-
abilities making up the Markov chain. While both
methods perform adequately, the ME formulation has
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the added advantage of flexibility, being able to accom-
modate invariant distribution information as part of the
estimation.

An empirical application of the methods presented
for Nebraska corn production is also presented. The sta-
tistical evidence suggests that the Markov chain for
Nebraska crop conditions is time homogeneous and both
approaches to the estimation of transition probabilities
result in similar forecasts. Even so, the ME approach for
estimating transition probabilities is shown to be more
flexible than weighted least squares. A simple economet-
ric model relating final Nebraska corn yields to a trend
variable and the proportion of “excellent” and “good”
corn acreage forecasted from the Markov model fits the
data well and provides accurate approximations to actual
monthly USDA yield forecasts.

Future research should be directed at yield forecasts
for other crops as well as total US crop production. In
addition, other types of estimators are possible and may
be more appropriate for other types of crops. Lastly, the
method outlined here for intrayear crop yield forecasting
likely has other applications. For example, bank loan risk
ratings are often modeled as a first-order Markov chain
that could be used to determine an important input for
forecasting loan loss allowance.

ACKNOWLEDGEMENTS
The author acknowledges the diligence of Derek Bunn,
Editor of the Journal of Forecasting.

DATA AVAILABILITY STATEMENT
Not applicable.

ORCID
J. R. Stokes @ https://orcid.org/0000-0003-3000-0741
ENDNOTES

! We note that unobservable a;(t) are actually aggregated from the
county to the state level before reporting c;(t).

2 The dynamic relationship between unconditional probabilities,
7(t+1) and 7;(t), is m;(t +1) = > ,mi(t)py;-

* In matrix terms, the minimization of (2) subject to (3)-(5) results
in the WLS estimator: Pyrs=[c/(t—1)HHc(t—1)] "+
¢/ (t—1)H'Hc(t) for generic weighting matrix H.

“ It can be shown that the optimal transition probabilities are a

function of the optimized Lagrange multipliers for the constraints
in (7) and (8).
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